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integrated values of the main peak were calculated 
in this case using the assumption that the angular 
dependence of the diffuse scattering intensity has no 
peculiarities and can be approximated by the linear 
function in the angular range of the main peak. The 
accuracy of the integrated values were estimated as 
10-15%. The tails of the TCD curve (2) fall sharply 
with the increase of [a[ and at a > 0  one can see a 
weak maximum which is due to the deformation of 
the layer by the activated implanted B atoms. The 
angular position of this maximum allows one to evalu- 
ate the average lattice deformation of the layer as 
Ad/d ~- -2 .8  x 10 -4. It is impossible to obtain quanti- 
tative information of this kind using the DCD curve 
(1). As follows from kinematical theory, a sharp 
decrease of the TCD curve intensity is connected with 
the layer lattice disorder, described by the small value 
of the Debye-Waller factor exp ( - W )  (see, for 
example, Afanasev, Aleksandrov, Imamov, Lomov & 
Zavyalova, 1984). 

Therefore, for sample (2) the RC measured by the 
DCD method is the angular dependence of the sum 
of the intensities of the strong diffuse waves and the 
extremely weak coherent wave. The TCD method 
allows one to measure a weak coherent component 
on the background of an intense diffuse scattering, 
which can be two or three orders of magnitude higher 
than the coherent one (Kazimirov, Kovalchuk & 
Kohn, 1987). 

The authors thank S. Yu. Shiryaev for supplying 
the samples and for useful discussions. 
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Abstract 

Impurity-atom fluorescence excited by X-ray stand- 
ing waves in the Laue case of X-ray diffraction has 
been investigated experimentally and theoretically. 
Possibilities for location of impurity atoms in the bulk 
and the surface layer of single crystals are discussed. 
The experiments were carried out on silicon crystals 
of different thicknesses doped with germanium. The 
general approach for calculation of the fluorescence- 
yield angular curves has been developed. In the case 
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of the uniform distribution of impurity atoms in the 
bulk of a crystal and also in the case of the kinematical 
X-ray diffraction on a thin surface layer, analytical 
expressions can be used. 

1. Introduction 
According to dynamical theory, during X-ray diffrac- 
tion in a nearly perfect crystal X-ray standing waves 
(XSW) are generated. The period of this wave is equal 
to or smaller by an integer than the interplanar 
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spacing between reflecting planes (Batterman & Cole, 
1964; Kovalchuk & Kohn, 1986). The yield of sec- 
ondary radiation accompanying X-ray absorption 
depends on the position of excited atoms with respect 
to nodes and antinodes of the standing wave. The 
angular dependence of the host atoms fluorescence 
yield allows one to determine the Debye-Waller fac- 
tor for the crystal lattice. Deformation of the surface 
layer leads to shifts of the surface atoms from their 
exact positions. For determination of these strains 
angular dependences of the external photoeffect are 
used because of a very small yield depth of photoelec- 
trons (Afanas'ev & Kohn, 1978). 

High spectral sensitivity of the standing-wave 
method with measurement of fluorescence yield 
makes it a very convenient tool for the location of 
impurity atoms in a crystal lattice. Up to now the 
problem of location of the impurity or adsorbed atoms 
has been solved with the use of the Bragg case, when 
the formation of standing waves takes place in a 
relatively thin surface layer (Golovchenko, Batterman 
& Brown, 1974; Materlik & Zegenhagen, 1984; 
Cowan, Golovchenko & Robbins, 1980). XSW in the 
Laue case with the registration of secondary radiation 
from the exit surface have been studied in several 
papers concerning lattice-atom fluorescence yield 
(Anaka, 1967) and external (Polikarpov & Yakimov, 
1986) and internal (Zheludeva, Kovalchuk & Kohn, 
1985) photoeffects. A Laue-case interferometer was 
used by Materlik, Frahm & Bedzyk (1984) for the 
location of chemisorbed atoms. 

The purpose of the present work is to study the 
formation of the fluorescence-yield angular curves in 
the Laue case and the possibilities of this geometry 
for location of the impurity atoms. As will be shown 
below, it is possible to study the position of impurity 
atoms distributed through the bulk of a crystal. In 
this case the sensitivity of XSW in the Bragg case 
decreases because of the extinction effect (Batterman, 
1964; Patel & Golovchenko, 1983). Moreover, in the 
Laue case it is easy to use different reflections (includ- 
ing asymmetrical ones) to study the impurity-atom 
positions in different crystallographic directions. 

The experimental results and their qualitative dis- 
cussion are given in § 2. The method of computing 
the impurity-atom fluorescence yield from the exit 
crystal surface in the Laue case is described in § 3. 
A comparison of the experimental and theoretical 
curves and the discussion are presented in § 4. Ana- 
lytical expressions for uniform bulk distribution of 
impurity atoms and for kinematical diffraction on a 
thin crystal are discussed also in § 4. 

2. Experiment 

The experimental arrangement (Fig. 1) was a conven- 
tional double-crystal spectrometer in the (n, - n )  set- 
ting. The first crystal C 1 diffracting the 111 reflection 

with Mo Ka was asymmetrically cut to increase the 
angular collimation of the incident beam. The asym- 
metry factor was /3 = 1/18. The sample C2 was set 
in the position of Laue-case (111) diffraction. Mo Ka 
radiation of a conventional X-ray tube was used. 

In the first series of measurements we used Si single 
crystals of different thicknesses with (100) surface 
orientation uniformly doped during growth with ger- 
manium (NGe=7"5 × 10 25 m-a) .  The 111 Laue reflec- 
tion in this case was asymmetrical with asymmetry 
factor /3 =0.85 (the angle between the diffracting 
planes and the crystal surface was 54-7°). Ge Ka 
fluorescence from the exit surface of the silicon crys- 
tals was measured by an energy-dispersive Si(Li) 
detector. The angle between the exit surface and the 
direction of fluorescence measurements was 60 ° . An 
Na(I) detector was used to record the diffracted beam. 
Because of the very low intensity of the impurity 
fluorescence yield (---0-3 counts s -~) the samples were 
scanned during measurements through the angular 
diffraction range with the simultaneous registration 
of the energy region of the Ge Ka characteristic peak 
for each angular point of a diffraction curve 
(Kazimirov & Kovalchuk, 1987). We used a torsion 
goniometer, piezoelectric driver and electronic feed- 
back system [similar to the one proposed by Krolzig, 
Materlik & Zegenhagen (1983)] for scanning and 
monitoring the sample angular position. 

Experimental curves are shown in Figs. 2 and 3. 
The angular dependence of Ge Ka fluorescence yield 
from a thick crystal with thickness 2-2 mm (Fig. 2) 
shows a large maximum slightly shifted to the low- 
angle side with respect to the maximum of the diffrac- 
ted intensity. On the contrary, in the case of a thin 
crystal with thickness 0-49 mm, the fluorescence curve 
(Fig. 3) shows a 'dip' near the center of the reflection 
range and a weak maximum at the high-angle side. 
So the curves are quite different. Physical reasons for 
such behavior will be discussed below. Here we note 
a very good agreement between the experimental 
curves (dots) and the theoretical ones (solid lines). 

In the second series of measurements we studied 
Si crystals with thickness 0.35mm, (111) surface 
orientation, with an epitaxic layer of 1.6 ~m on the 
exit surface. During growth the epilayer was doped 
with boron and simultaneously with germanium 

C~ ~-~ Nal 

LO 

C, 

Fig. 1. Experimental arrangement. C1 monochromator, C2 
specimen. 
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(NGe---- 1028 m - 3 ) .  The angle between the surface and 
the (111) diffraction planes was ~ = 70.5 °. In this case, 
the 111 reflection was asymmetrical with asymmetry 
factor /3 = sin (¢ - OB)/sin ((p + OB) = 0"92 close to 
unity because of the small value of the Bragg angle 
OB = 6" 5 °. 

The experimental curve of Ge Ka fluorescence 
yield from the epilayer in the angular range of diffrac- 
tion in the substrate is shown in Fig. 4. In this case 
fluorescence was excited by XSW formed in the bulk 
of the crystal. An X-ray rocking curve in a wide 
angular range is shown in Fig. 5(b). One can see that 
apart from a strong diffraction peak from the substrate 
there is also an additional weak and broad diffraction 
peak from the epilayer. This means that as a result 
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Fig. 2. Angular dependence of  the Ge Ka fluorescence yield from 
the Si crystal with t = 2.2 mm uniformly doped with Ge: circles 
- experiment; solid line - calculation for substitutional impurity 
atoms ( u ~ = 0 ) ;  dashed curve - calculation for impurities at 
u~ =0.15d~1 t . The X-ray reflection curve PR is also shown. 
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Fig. 3. Angular dependence of  the Ge Ka fluorescence yield from 
the Si crystal of  t = 0-49 mm" circles - experiment; curve 1 - 
calculation for substitutional impurity atoms; curve 2 - calcula- 
tion for randomly distributed impurities. 

of the deformation by impurity atoms (mainly by 
germanium) the lattice parameter of the epilayer 
differs from that of the substrate. The deformation in 
the given crystallographic direction can be estimated 
as Ad/d  = - 3 . 8 x  10 -3 .  Under X-ray diffraction on 
the epilayer, the so-called 'kinematical' standing 
waves are formed in this layer. The fluorescence yield 
in this angular range is shown in Fig. 5(a).  Weak 
minimum and maximum of the yield were clearly 
observed on the increasing background. The angular 
dependence of the background is due to the difference 
between the plane wave and the wave incident on the 
layer due to the diffraction in the bulk. 
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Fig. 4. Angular dependence of  the Ge K a  fluorescence yield from 
the epilayer: circles - experiment; curve 1 - calculation for 
substitutional impurity atoms; curve 2 - calculation for randomly 
distributed impurities. 
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Fig. 5. Angular dependence of  the Ge K a  fluorescence yield in 
the angular range of  the X-ray diffraction on the epilayer (a)  
and the corresponding X-ray diffraction curve (b). Dashed lines 
- calculations for substitutional impurity atoms (1) and for 
randomly distributed impurities (2). 
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3. Theory 

The theory of secondary-radiation yield excited by 
X-ray standing waves has been developed in a series 
of studies in the Bragg case (Batterman & Cole, 1964; 
Kovalchuk & Kohn, 1986; Afanas'ev & Kohn, 1978) 
as well as in the Laue case (Anaka, 1967; Zheludeva, 
Kovalchuk & Kohn, 1985). In a general case the 
problem is rather complicated and can be solved only 
by numerical methods. Let us recall the formulation 
of the task. In the two-beam approximation an X-ray 
electric-field amplitude has the following form: 

E ( r )=  Y~ £ E,,s(Z) exp(iK,,,r)e,,~, (1) 
m = O , h  s=rr ,  cr 

where Kh = Ko+h, h is the reciprocal-lattice vector. 
Eo~(Z) and Ebb(Z) for each state of polarization s 
satisfy the following set of differential equations over 
coordinate z perpendicular to the crystal surface: 

dEo/ dz = ( irr/ A To)[XoEo + CXg exp ( iq~ - W) Eh], 

dEh/dZ= ( iTr/ A yh) (2) 

X[(Xo--a)Eh + CXh exp ( - i~0-  W)Eo]. 

Here Xo, Xh, X~ are the Fourier coefficients of polar- 
izability g = Xr+ ix~ of a crystal for X-rays corre- 
sponding to the 0, h and - h  reciprocal-lattice vectors; 
C=(eo~eh~) is the polarization factor, a =  
--2sin20B(0--0B),  0 is the angle between Ko and 
diffraction planes, 0B is the Bragg angle, Yo = KoJ K, 
yh=Khz/K, K=27r/A, A is the wavelength of the 
X-rays. The phase q~(z)=hu(z) is due to the mean 
displacement of lattice atoms from their positions in 
an ideal lattice caused by the change of the interplanar 
spacing, e x p ( - W )  is the Debye-Waller factor 
describing static displacements of the atoms from the 
mean position. 

The yield of secondary radiation (Kovalchuk & 
Kohn, 1986; Afanas'ev & Kohn, 1978) is determined 
by 

K(~'~)(A0) = K j dz P,,(z)( Eos(Z, aO)12 +lE~(z, aO) z 
o 

+ C(o~'~)(z) Re {E*o~(Z, aO)Eh~(Z, AO) 

x exp [iq~(z)]}), (3) 

where 
(~) (v) 

C(o~'~)(z) = 2C exp [ -  W,(z)] X,~ /X,o . (4) 

Here A0 = 0 -  0~, t is the crystalthickness, XI~ ) and 
X~ ) are the contributions of atoms emitting the 
fluorescent radiation to the Fourier coefficients of the 
imaginary part Xi of the crystal polarizability. The 
type of secondary radiation and the type of atoms 
emitting it are characterized by index u. Correspond- 

(~) 
ingly, the phase q~(z)= hu~(z)+ q~ and the factor 
exp [ -  W~(z)] relates only to atoms of type ~,, q~) is 

04 the phase of the complex value Xg • The function 
P,(z) describes the yield of secondary radiation of 

type u emitted by atoms located at depth z. K is the 
normalization coefficient chosen so that K(A0)= 1 at 

Equations (1)-(4) are general and can be used to 
analyse a wide range of problems. Below we shall 
discuss in detail the situation when a crystal can be 
considered as a set of layers with different lattice 
parameters, perfections and atomic compositions. A 
crystal lattice of each layer is characterized by a 
constant within the layer parameters and ad/d,  
exp ( -  W) and XO.h describe the change of the plane 
spacing, decrease of the coherent scattering amplitude 
and the composition, respectively. Different from 
Kovalchuk, Kohn & Lobanovich (1985), here we shall 
be interested only in the Laue case (Yh > 0) and the 
fluorescence yield from the exit surface. In this case 
P,(z) = C~ exp [/zyi(z- t)] where /zyi = 1/Lye, Ly~ is 
the depth of the fluorescence yield, C, is the con- 
centration of impurity atoms. 

Let us consider a layer of thickness T at the depth 
Zo< z < z0+ T. The phase ~o(z) in (2) depends linearly 
on z because ad /d  is constant within a layer 

~o(z) = q~(Zo) + 2 YAz/L, (5) 

where A z = z - Z o ,  Y and L are constant, L is an 
extinction length averaged over the crystal bulk. The 
solution of (2) should satisfy the given values of Eo 
and Eh on the entrance boundary of a layer. 

There are several approaches for solving (2)-(5) 
with constant values of Y and exp ( -  W) within the 
layer. Below we will use the method developed by 
Kovalchuk, Kohn & Lobanovich (1985) for the Bragg 
case. We define the reflectivity amplitude by 

Eh(Z) exp [iq~(z)] 
R ( z ) -  Eo(z) (~fl),/2 , (6) 

where ~=gh/ga, fl=YO/Th. The function R(z) 
satisfies the non-linear equation following from (2): 

iL (dR/dz )=2bR+C~(1-R2) ,  (7) 
where 

b = y + iyo- Y, 

y=_f l l /2  sin 20o[AO--Xro(1-fl)/(2fl sin 20B)]/X, 

yo= X,o(1-fl)/(2fl~/Ex), X =  h( YOYh)~/2/ TrL, 

C~=C(l_ip)e-WL/Lex,  (8) 

p = - I m  (XhXE)I/2/Re (XhX~) 1/2, 

Lex = A ( 70~h)1/2/[ 7r Re (XhXa)I/2], 

with a boundary condition R = Ro on the upper 
boundary of a layer at z = Zo. 

The solution of (7) is given by 

X 1 -  X2D exp (crAz) 
R(z, AO)= , (9) 

1 - D exp (o-Az) 
where 

D= (X1-  Ro)/(X2-  Ro). (10) 
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Inserting (9) and (10) into (7) and equating to zero 
coefficients at different powers ofexp (crAz) we obtain 

X,,2 = [ b + ( b 2 + C21)1/2]/C1, 
(11) 

cr = (2 i /L ) (  b E + C2) u2. 

For simplicity below we will use the branch of the 
square root of (11) with the positive imaginary part. 

Taking (6) into account, the equation for Eo(z) has 
the following solution: 

Eo(z)=Eo(zo)exp(iTrXoAz ic, f ) 
k Ay0 - -~x~x d z lR ( z l )  . 

Z0 
(12) 

Inserting (9) and (10) into (12) and performing 
calculations we have 

lEo(z)[ 2= IEo(zo)lZla(zaz)[=la(o)[ -2 exp (- ix~Az) ,  

(13) 

where 

A( Az) = 1 - D exp (trAz), 
(14) 

/z~ =/Xo(1 + f l ) / (2yo)+ Re o-. 

Here /z0=27rXio/A is the normal absorption coeffi- 
cient and Re o-< 0, so/Zl is the absorption coefficient 
corresponding to the anomalous transmitted field. 

The equations obtained allow us to calculate the 
contribution of a layer considered in the integral (3). 
Omitting the calculations, we can write down the 
result in the form 

AK( T, AO) = TP~(zo)lEo(zo)12la(o)[ -~ 

x ( ~ , [  1 + Ix, + Re (X, Ca)] 

+IDI 2 q~2[ 1 + Ix=l c  + Re (X2 C3)] 

- R e  {D~312(1 + X*IX2C2) 

• -[-X~lC~3..~-X2C3]}) , ( 1 5 )  

where 

q t k = [ e x p ( M k T ) - l ] / ( M k T ) ,  Mk=l~yi-- laq+Ak,  

A m = 0,  A 2 = 2 Re tr, A 3 = i Im or, (16) 

C2 = I~:lfl, c3=Co(¢~)U2exp[ i (~o , -q~)] .  

It was assumed in the calculations that the phase 
difference (~0- q~,) does not depend on z. 

For the case of several layers it is easy to calculate 
the contribution of each layer using recurrent 
equations (10), (13) and starting from the entrance 
surface of crystal, where Eo = 1 and R = 0. Note that 
if layers differ from each other by the atomic composi- 
tion and the crystal does not have a center of sym- 
metry, then the function ¢l/ZR will be continuous but 
not R. X-ray transmission (Pr)  and reflection (PR) 
coefficients are given by 

PT=IEo(t)[ z, PR-" Prl#R(t)l. (17) 

Equations (8)-(17) were used for computer simula- 
tion of the experimental results. Convolution with the 
first crystal reflection curve was also taken into 
account. 

4. Discussion 

First of all we will discuss the experimental results 
for crystals uniformly doped with impurity (Figs. 2 
and 3). In this case the whole crystal can be con- 
sidered as one layer, so in (15) T =  t, D = X 1 / X 2 .  
Moreover, in our experiments we have LA >> Lyi >> Lex, 
where LA = 3/o/tZo. Since Lyi >> Lex, the third (interfer- 
ence) term in (15) is very small and we can neglect 
it (I ~31 "~ I ~ [ ,  I On the other hand, since L A >~ Ly i 
the normalized fluorescence yield depends neither on 
L~x nor on Lyi. Taking the above consideration into 
account we have approximately from (15) 

K(t, AO)"-" Y. Ik(AO) exp[AtXk(AO)t], (18) 
k=l,2 

where 

I~=(1 + x~,t~ + X~B)(1 + X~,) -:, 
X,,2 = [y q: (y2 + C2)u2]/C, 

(19) 
[2 Cfl ~/2lx,~l/ Xio - Xk (1 -- fl ) ] 

Atzk = --Xk 
[ tA(1 . -F  XZk)] 

B =  2Cfl'/21XIT,)I(X~)) -~ exp ( -  W~) cos (27ru~/d). 

To derive (18) we put ~=1 ,  Y = 0  and used the 
expansion for the complex parameters Xk in powers 
of a small value (Ixil/Ixrl). The parameter u~ defines 
shifts of impurity atoms from crystal-lattice nodes in 
the direction of a reciprocal-lattice vector h. 

The most significant feature of Laue-case X-ray 
diffraction is that two types of standing waves are 
formed in a crystal. One of these waves is a weakly 
absorbed field with the nodes on the atomic planes, 
corresponding to the well known Borrmann effect. 
The other is a strongly absorbed field with the anti- 
nodes on the atomic planes. So, as follows from (18), 
the fluorescence-yield angular curve differs sharply 
for a thick crystal (t >> LA) and a thin one (t < LA). 
The experimental curve shown in Fig. 2 corresponds 
to t=4"3La.  In this case the secondary-radiation 
yield is excited only by the weakly absorbed X-ray 
standing-wave field [k = 1 in (18)]. The other feature 
of the Laue case is that with rocking a crystal through 
the reflection position, the standing-wave fields do 
not move with respect to the atomic planes (as in the 
Bragg case), but only intensities of these fields 
increase or decrease. The weakly absorbed field has 
a maximum intensity at 0 = On due to the anomalous 
X-ray transmission. So, even for impurity atoms lying 
strictly in the crystal nodes (u, = 0) one can observe 
increase of the fluorescence yield at 0 "--0B in com- 
parison with a background yield. At any displacement 
from the crystal node, the impurity atom occurs in 
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the region of the increased field intensity and fluores- 
cence yield increases. 

The experimental curve obtained (Fig. 2) is in good 
agreement with the theoretical one for the model of 
substitutional impurity-atom position. The maximum 
normalized fluorescence yield is 3-3. For the impurity 
atom between the reflecting planes (up = d/2) this 
value would be 13.9. Note that the sensitivity to the 
position of the impurity atom increases with increas- 
ing crystal thickness. Dependences of the normalized 
fluorescence-yield maximum on the impurity position 
with respect to (111) and (022) reflecting planes are 
shown in Fig. 6 for different crystal thicknesses. The 
sharper dependence for 022 reflection is due to the 
enhancement of the Borrmann effect in comparison 
with 111 reflection. On the other hand, with increasing 
crystal thickness the background fluorescence yield 
decreases rapidly. Thus, crystals with intermediate 
thicknesses, but not too thick, are more appropriate 
for impurity-location studies. It should be noted that 
a randomly distributed fraction of impurities also 
leads to an increase of the fluorescence yield. Indeed, 
the static Debye-Waller factor for impurity atoms 
exp( -W~)  and the term cos (27ru~/ d) describing 
coherent displacements are included in (18) as the 
multipliers. When experimental curves cannot be 
treated unambiguously, the additional information 
should be obtained using other reflections, which is 
easily realized in the Laue case. 

For a thin crystal, because of the excitation of both 
standing-wave fields the situation is more compli- 
cated. Both weakly (k = 1) and strongly ( k =  2) ab- 
sorbed fields can make a significant contribution to 
the fluorescence-yield curve, but at different angular 
positions: field 1 at 0 < 0e and field 2 at 0 > 08. The 
main factor now is a degree of interaction of impurity 
atoms with the standing-wave fields but not the 

anomalous X-ray transmission. If the impurity atom 
is in the lattice node, it interacts with field 2 more 
than with field 1. So, the maximum of the yield will 
be observed at 0 >  0a (curve 1 in Fig. 3). The 
minimum on curve 1 occurs because field 1 does not 
interact with impurities and field 2 is not excited in 
this angular region. If impurity atoms are randomly 
distributed [in (19), exp ( -  W~) = B = 0], this effect is 
compensated for entirely by increasing the interaction 
with field 1 (curve 2 in Fig. 3). In Fig. 7, one can see 
the fluorescence yield curves calculated for different 
positions of impurity atoms. It is obvious that with 
displacement of the impurity from the diffraction 
plane interaction with the weakly absorbed field 
increases and with the strongly absorbed field 
decreases. So the fluorescence yield increases at 0 < 08 
and decreases at 0 > 0B. The experimental curves for 
both thick and thin crystals unambiguously show 
that germanium is substitutional in silicon. Such 
behavior corresponds to the isovalent nature of this 
impurity. 

Now we shall discuss the experimental results 
obtained with the crystal with the epilayer. The layer 
thickness T = 1.6 ~m is much less than the extinction 
length Lex = 12.6 Ixm and t > L A. Impurity atoms 
which are only in the layer 'see' both standing-wave 
fields and their interference in the angular range of 
the X-ray diffraction in the substrate. The interference 
term oscillates with increasing z and the period of 
these oscillations is different at different values of the 
incident angle: at 0 = 08 the period is equal to ~rLex 
and it decreases with increasing 10 - 0s[. Since t >> Lex, 
the fluorescence-yield angular curve for the case of 
the incident plane wave strongly oscillates with the 
period less than the angular divergence of the real 
incident beam. So, in our treatment of the experi- 
mental curve the interference term can be averaged 
again giving a zero contribution, although the reason 

~max 

0.1 0.2 0.3 0.4 0.5 

Fig. 6. Theoretical dependences of the maximum fluorescence 
yield on the position of impurity atoms for silicon crystals of 
different thicknesses. Solid lines- 111 reflection; dashed lines - 
220 reflection. 
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Fig. 7. Calculated angular dependences of impurity fluorescence 
yield from a thin Si crystal for various impurity positions. 
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for this averaging is quite different from that of the 
previous case. 

Taking all points above into account, it is clear 
why the calculated curves in Fig. 4 for substitutional 
and randomly distributed impurities are very similar 
to the curves in Fig. 3, although the calculations were 
carried out in a double-layer model including convol- 
ution. But, in this case the experimental curve is in 
good agreement with the model of random distribu- 
tion. This means only that impurity atoms are in all 
possible positions with respect to the standing waves 
formed in the substrate. Nevertheless, impurities in 
the layer could be ordered, but with period different 
from the period of the substrate reflection planes. 

It is possible to answer the question of impurity 
position by measuring the fluorescence-yield curve in 
the angular range of X-ray diffraction on the epilayer. 
Since the reflection of X-rays by the epilayer is small 
( T ~  Lex), the standing wave is formed in the layer 
with intensity weakly oscillating around the average 
value - the so-called kinematical standing wave. The 
total reflectivity amplitude in the kinematical approxi- 
mation is 

R(z)  = Ce -w  e 'qz sin (qz)/(iqLex) 

+ Ro(/tO + AOB) e 2iqz, (20) 

where coordinate z starts from the upper boundary, 
q = -y /Lex  = (Tr sin 20B/Ayh)AO, /tO is the angular 
deviation from the Bragg angle for the layer, R0 is 
the reflectivity amplitude of the substrate, /tOe= 
0t~-0 ° ,  where 0B and 0 ° are the Bragg angles for 
the layer and the substrate. 

The fluorescence yield from the layer is defined by 
the general equation (3): 

T 
K(T, AO)= K ~ dz P~(z)lEol={1 + IR(z)lZt3 

o 

+ Cofl'/ERe [R(z)  exp (2.triu,,/d)]}, (21) 

but at Lyi >> T one can put P~(z) = 1 in (21). Moreover, 
one can consider that the amplitude of the 'incident' 
wave does not depend on z and this is the 0 com- 
ponent of one of the two standing waves formed in 
the substrate. Since X-ray diffraction by the layer is 
observed at 0 > 0 ° the 'incident' wave is the 0 com- 
ponent of the strongly absorbed field (k = 2). In our 
case, the shift of the Bragg angle in the layer with 
respect to the substrate A0t~ is large enough. It allows 
us to neglect the h component of the substrate stand- 
ing wave and put Ro = 0 in the following consider- 
ation. 

For simplicity we shall discuss two limiting cases: 
the first one is for randomly distributed impurities 
(C0 = 0) and the second one is for impurities in crystal 
nodes (u~ = 0). 

In the first case, substituting (20) into (21) and 
performing the integration we obtain 

K( T, AO) = K E o 2 T  
1 + . \  qLex / 

x ( 1  sin (2qT~ /1 (22) 
As follows from (22), on the background yield which 
increases with increase of/tO due to the dependence 
of Eo 2 on A0 in the range 0 > 0  ° ,  a very weak 
maximum should be observed with symmetrical shape 
and intensity proportional to (T/Lex) 2. 

In the second case, 

K(T, A O ) = K  E02T[1 + 
l/2CoCe- w 

qLex 

sin (2qT)'~ 
x ( 1  2qT / ] "  (23) 

From (23) quite a different angular dependence of 
the fluorescence yield follows. It is determined mainly 
by the interference term and after subtracting the 
background it has a dispersion form with the 
maximum at A0 > 0 and the minimum at/tO < 0 both 
being proportional to (T/LeO. Just such behavior is 
observed experimentally pointing to the correct posi- 
tions of germanium in the layer lattice. 

The theoretical curves shown in Fig. 5 were calcu- 
lated using the general approach described in § 3. 
Both experimental fluorescence-yield curve and X- 
ray rocking curve are weaker and broader. It is known 
(Gorbacheva et aL, 1986) that a high concentration 
of germanium in silicon causes the formation of a 
mosaic structure. This kind of imperfection is the 
most probable reason for the broadening of the 
experimental curves. 

It was considered previously that X-ray standing- 
wave fields could be formed only in large and nearly 
perfect crystals. It is remarkable, as we have demon- 
strated, that standing waves giving useful structural 
information can be formed in thin and disordered 
crystals. 
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Abstract 

Two different techniques for employing one- 
wavelength anomalous scattering, one using a direct- 
methods approach and the other a Patterson-like 
function, are applied to two known protein structures. 
The first of these, avian pancreatic polypeptide, is in 
space group C2 with one molecule containing 36 
amino-acid residues in the asymmetric unit. The 
second, ribonuclease Sa in space group P212121, has 
two molecules each containing 96 amino-acid 
residues in the asymmetric unit. Both methods give 
phase indications easily leading to the elucidation of 
the smaller structure and probably enabling the larger 
structure to be solved as well. For each structure the 
electron density maps from the phases given by the 
two methods are combined through a minimum func- 
tion. The Fourier transform of the resultant map gives 
phases better than those given by the individual 
methods, reducing the mean phase error by 2-3 °, 
which could be critical in some applications. 

Introduction 

In principle the techniques of multiple isomorphous 
replacement (MIR) and many-wavelength anomalous 
dispersion (MAD) enable phases to be determined 
explicitly and hence structures to be solved. In par- 
ticular, the MIR method has been very successful for 
the solution of protein structures; indeed it could be 
said that the present advanced state of protein crystal- 
lography is almost entirely due to this technique. 
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There do occur situations where the MIR technique 
cannot be app l i ed- fo r  example, when derivatives 
are not isomorphous with the native product. In such 
a case the native material may contain a heavy, or 
fairly heavy, atom such as mercury or zinc and the 
technique of anomalous scattering is available. 
Although MAD is then possible (Hendrickson, P~ih- 
ler, Smith, Satow, Merritt & Phizackerley, 1989), the 
problem of taking accurate data at different 
wavelengths with a synchrotron source and then 
scaling them together does present considerable 
problems. By contrast one-wavelength anomalous- 
scattering (OAS) data can be taken much more easily 
and have been used successfully to solve protein 
structures. 

Techniques for the use of OAS data include com- 
bining information from anomalous differences with 
direct methods (Fan Hai-fu, Han Fu-son, Qian Jin-zi 
& Yao Jia-xing, 1984) and also use of the Ps function, 
first introduced by Okaya, Saito & Pepinsky (1955) 
and further developed by Hao Quan & Woolfson 
(1989). Examination of the results of applying these 
two methods reveals that, while they use the same 
basic data and give mean phase errors of similar 
magnitude, there are significant differences in the 
distribution of the e r rors -so  that a reflexion with a 
large phase error from one technique does not 
necessarily have a large phase error from the other. 
This led us to examine the possibility of combining 
the results of the two techniques to obtain something 
better than either of them individually; this work is 
reported here. 
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